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Abstract 
An extension of the liquid-like motions model of diffuse scattering to include individual atomic 
B factors is derived.  
 
Introduction 
In the liquid-like motions model (LLM) of diffuse scattering (Caspar, Clarage et al. 1988), the 
diffuse intensity is described using the following equation: 
 

𝐼!(𝑞) = 𝑒"|$|!%!|𝑞|&𝜎&𝐼'(𝑞) ∗ 𝐹𝑇 ,𝑒
"|(|) -, 

(1) 

 
where 𝑞 is the scattering vector, 𝜎 is the standard deviation of atom displacements along any 
direction, 𝐼'(𝑞)  is the squared structure factor of the unperturbed crystal, 𝑟 is the separation 
between atom pairs, 𝛾 is a correlation length, * indicates a convolution, and 𝐹𝑇  indicates a 
Fourier transform. The generalization of the LLM to anisotropic displacements and correlations 
yields the following equation (Wall, Clarage et al. 1997): 
 

𝐼!(𝑞) = 𝑒"$∙+∙$𝑞 ∙ 𝑉 ∙ 𝑞𝐼'(𝑞) ∗ 3
8𝜋det‖𝐺‖
(1 + |𝐺𝑞|&)&=, 

(2) 

 
where 𝑉 is the matrix of atomic displacement variations, and the analytic form of the Fourier 
transform is used, where 𝐺 is the matrix of correlation lengths. A similar equation where the 
convolution is instead with ,-det‖2‖

34|2$|!
  (a Lorentzian) corresponds to acoustic modes, which 

describe streaked features in calmodulin (Wall, Clarage et al. 1997) and sharper diffuse features 
features near the Bragg peaks in P1 lysozyme (Meisburger, Case et al. 2020). The LLM model 
corresponds to the leading term in a Taylor expansion; the higher-order terms can be preserved, 
as was illustrated in a model similar to the LLM, but where correlations do not extend across 
molecular boundaries (Ayyer, Yefanov et al. 2018).  
 
Here we extend the LLM model beyond the assumption that the displacements of all atoms are 
described using the same matrix 𝑉, to the case of individual atom displacements. 
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Model 
The total squared structure factor of a crystal can be computed using the following equation: 
 
𝐼 = >>𝑓5𝑓6∗𝑒8$∙9:"":#4;$";%<𝑒8$∙9="$"=#%<

65>?

, (3) 

 
where 𝑅> is the position of the origin of unit cell 𝑗, 𝑥5 is the reference position of atom 𝑚 within 
each unit cell, and 𝑑>5 is the deviation of the position of atom 𝑚 from the reference in unit cell 𝑗. 
Assuming atom displacements are statistically homogeneous, we replace the phase factor of the 
deviations with an average over the unit cell, then sum over 𝑘, noting that the difference between 
two lattice vectors is also a lattice vector:  
 
𝐼 = 𝑁>>𝑓5𝑓6∗𝑒8$∙9("$%<〈𝑒8$∙9="$"=#%<〉?

65>

, (4) 
 

 
where  
 
𝑟>56 = 𝑅> + 𝑥5−𝑥6 (5) 

 
Now, as is standard, e.g., in calculation of the Debye-Waller factors, use the harmonic 
approximation to evaluate the average over the phase factor due to deviations: 
 

𝐼 = 𝑁>>𝑓5𝑓6∗𝑒8$∙9("$%<𝑒"
3
&〈A$∙9="$"=#%<B

!〉#

65>

. 

 

(6) 
 

Further evaluate the average to obtain 
 

𝐼 = 𝑁>>𝑓5𝑓6∗𝑒8$∙9("$%<𝑒"
3
&$∙D$∙$𝑒"

3
&$∙D%∙$𝑒$∙D$%9("$%<∙$

65>

 (7) 
 

 
The exponential factors correspond to Debye-Waller factors for individual atoms (involving 𝑈5 
and 𝑈6) and a factor for the correlated displacements of two atoms (involving 𝑈56). We will 
make some assumptions about the 𝑈56 factor to derive the modified LLM model, but first, make 
sure the incoherent scattering (𝑗 = 0 and 𝑚 = 𝑛) is properly accounted for when choosing an 
arbitrary 𝑈56 that might not precisely match the individual atomic displacements: 
 

𝐼 = 𝑁>>𝑓5𝑓6∗𝑒8$∙9("$%<𝑒"
3
&$∙D$∙$𝑒"

3
&$∙D%∙$𝑒$∙D$%9("$%<∙$

65>

+ 𝑁>|𝑓5|&N1 − 𝑒"$∙D$∙$𝑒$∙D$$(')∙$O
5

 

 

(8) 
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Now separate the Bragg term and isolate the diffuse intensity from both the incoherent correction 
and Bragg: 
 

𝐼 = 𝑁>>𝑓5𝑓6∗𝑒8$∙9("$%<𝑒"
3
&$∙D$∙$𝑒"

3
&$∙D%∙$

65>

+ 𝑁>>𝑓5𝑓6∗𝑒8$∙9("$%<𝑒"
3
&$∙D$∙$𝑒"

3
&$∙D%∙$P𝑒$∙D$%9("$%<∙$ − 1Q

65>

+ 𝑁>|𝑓5|&N1 − 𝑒"$∙D$∙$𝑒$∙D$$(')∙$O
5

 

 

(9) 

 
From which we identify the first term as corresponding to the Bragg: 
 

𝐼G = 𝑁>>𝑓5𝑓6∗𝑒8$∙9("$%<𝑒"
3
&$∙D$∙$𝑒"

3
&$∙D%∙$

65>

, 

 

(10) 
 

the middle term corresponding to the diffuse: 
 

𝐼! = 𝑁>>𝑓5𝑓6∗𝑒8$∙9("$%<𝑒"
3
&$∙D$∙$𝑒"

3
&$∙D%∙$P𝑒$∙D$%9("$%<∙$ − 1Q

65>

, 

 

(11) 
 

and the last term corresponding to the incoherent correction: 
 
𝐼86H = 𝑁>|𝑓5|&N1 − 𝑒"$∙D$∙$𝑒$∙D$$(')∙$O

5

. (12) 
 

 
Now, the key assumption of the LLM is that the 𝑈56N𝑟>56O has the same form for all pairs of 
atoms, and only depends on the separation vector 𝑟>56. In this case 𝑈56N𝑟>56O can be written as 
 
𝑈56N𝑟>56O = 𝑉𝑐N𝑟>56O, (13) 

 
where 𝑉 is a (potentially anisotropic) matrix of variations and 𝑐N𝑟>56O is a scalar function with 
values in the range [-1,1] describing the correlation vs separation. Making this substitution and 
using a Taylor expansion for the exponential yields 
 

𝑁>
(𝑞 ∙ 𝑉 ∙ 𝑞)I

𝑙!

J

IK3

>>𝑒8$∙9("$%<𝑓5𝑓6∗𝑒
"3&$∙D$∙$𝑒"

3
&$∙D%∙$𝑐IN𝑟>56O

65>

, 

 

(14) 
 

which, using the Dirac delta function, is equivalent to 

>
(𝑞 ∙ 𝑉 ∙ 𝑞)I

𝑙!

J

IK3

U𝑑L𝑟 𝑒8$∙(𝑐I(𝑟)𝑁>>𝛿N𝑟 − 𝑟>56O𝑓5𝑓6∗𝑒
"3&$∙D$∙$𝑒"

3
&$∙D%∙$

65>

. 
(15) 
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Note that  
 

U𝑑L𝑟 𝑒8$∙(𝑁>>𝛿N𝑟 − 𝑟>56O𝑓5𝑓6∗𝑒
"3&$∙D$∙$𝑒"

3
&$∙D%∙$

65>

=𝑁>>𝑒8$∙9("$%<𝑓5𝑓6∗𝑒
"3&$∙D$∙$𝑒"

3
&$∙D%∙$

65>

= 𝐼G , 

(16) 
 

 
which identifies the double sum in Eq. (15) as the Patterson of the mean electron density of the 
crystal, 𝑃(𝑟). We therefore have 

𝐼! =>
(𝑞 ∙ 𝑉 ∙ 𝑞)I

𝑙!

J

IK3

U𝑑L𝑟 𝑒8$∙(𝑐I(𝑟)𝑃(𝑟), 

 

(17) 
 

or, by the convolution theorem, 
 

𝐼! =>
(𝑞 ∙ 𝑉 ∙ 𝑞)I

𝑙!

J

IK3

𝐼G ∗ U𝑑L𝑟 𝑒8$∙(𝑐I(𝑟). 

 

(18) 
 

which, to first order, is 
 
𝐼! = 𝑞 ∙ 𝑉 ∙ 𝑞𝐼G ∗ 𝐹𝑇[𝑐(𝑟)]. 
 

(19) 
 

Compared to Eq. (2), this equation is missing the leading factor 𝑒"$∙+∙$. Eq. (2) otherwise has the 
same form as the first order term in this expansion, but with the unperturbed squared structure 
factor 𝐼' (computed without individual atom B factors) replaced by the Bragg intensity 𝐼G 
(computed using the individual atom B factors). 
 
As an example, the following is the equation for the isotropic LLM using individual B factors, in 
which the correlation decreases exponentially with distance: 

𝐼! = |𝑞|&𝜎&𝐼G ∗ 𝐹𝑇𝑒
"|(|) , 

 

(20) 
 

yielding 

𝐼!(𝑞) = |𝑞|&𝜎&𝐼G(𝑞) ∗
8𝜋𝛾L

[1 + (𝛾|𝑞|)&]&. 

 

(21) 
 

Similar to the original LLM, in this individual B factor LLM, 𝜎 corresponds to the portion of the 
atom displacements that obey an exponential falloff of the correlations with distance. Note that, 
to first order, changes in 𝜎 simply scale the entire diffuse pattern and do not change the shape of 
the distribution. Obtaining an estimate of 𝜎 requires placing the diffuse intensity on an absolute 
scale. Methods for placing the diffuse intensity on an absolute scale were recently developed in a 
study of P1 lysozyme (Meisburger, Case et al. 2020).  
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Conclusion 
Individual atomic B factors can be included in the LLM model of diffuse scattering by 
eliminating the overall Debye-Waller factor N𝑒"|$|!%!O, and replacing 𝐼'(𝑞), the squared 
structure factor of the unperturbed crystal, with 𝐼G(𝑞), the Bragg intensity computed from the 
participating atoms.  
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